
EE 508

Lecture 37

Oscillator/VCO-Derived Filters



Consider a cascaded integrator loop comprised of 

n integrators
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Oscillator Background:

XOUT=?( )OCT s

This structure is often used to build oscillators

(assume an odd number of inverting integrators)

Review from last lecture:
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Consider moving all poles to left by Δα
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So since α is fixed , to get a high ω0, want β as large as 

possible

Consider the following 3-pole situation
Review from last lecture:



Define the location of the filter pole to be

F Fα +jβ

Consider now the filter obtained by adding a loss of αL to the integrators

It follows that

Fβ β= F Lα =α-α

Will now determine αL and I0 needed to get a desired pole Q and ω0  by moving all 

poles so that right-most pole pair is the dominant high-frequency pole pair of the  filter 

The relationship between the filter parameters

is well known
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The values of α and β are dependent upon I0 but

the angle θ is only dependent upon the number of

integrators in the oscillator or VCO
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Will a two-stage structure give the highest frequency of operation 

for integrators with unity gain frequency I0?
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• Even though the two-stage structure may not oscillate, can work as a filter!

• Need  odd number of inversions in integrators

• Can add phase lead if necessary
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What will happen with a circuit that has two pole-pairs in the RHP?

The impulse response (for n=7) will have two decaying exponential terms 

and two growing exponential terms

( )
1

0 i

n/2
α t α t

0 i i i
i

A e A e cos β t+θ
=

+ 

Oscillator Background:

General form of response for odd number of poles: 
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What will happen with a circuit that has two pole-pairs in the RHP?

Consider the growing exponential terms and normalize to  I0=1 
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At t=145 (after only 10 periods of the lower frequency signal)
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The lower frequency oscillation will completely dominate !



What will happen with a circuit that has two pole-pairs in the RHP?

Can only see the lower frequency component !
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Thanks to Chen for these plots



What will happen with a circuit that has two pole-pairs in the RHP?

Consider the growing exponential terms and normalize to  I0=1 

α1=0.2225

α2=0.9009

After even only  two periods of the lower frequency waveform, it 

completely dominates !
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Thanks to Chen for these plots



How do we guarantee that we have a net coefficient of +1 in D(s)?
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Must have an odd number of inversions in the loop !

If n is odd, all stages can be inverting and identical !
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How do we guarantee that we have a net coefficient of +1 in D(s)?

( ) n n
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If fully differential or fully balanced, must have an odd number of 

crossings of outputs

Applicable for both even and odd order loops 
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• Add loss to delay stages

• Multiple Input Locations Often Possible

• Natural Input is Input to delay stage 

Inputs to Oscillator-Derived Filters:

XOUT=?( )OCT s
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Most applicable to designing 2nd-order high frequency narrow band bandpass filters



A lossy integrator stage 
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A fully-differential voltage-controlled integrator stage 

Will need CMFB circuit
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A fully-differential voltage-controlled integrator stage with loss 
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A fully-differential voltage-controlled integrator stage with loss 
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(almost same as previous)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Recall:

Substituting for I0 and αL we obtain:
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Unknowns:  IB,VEB1,W1/L1,W2/L2,CX



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Expressing gm1 and gm2 in terms of design parameters:

If we assume IB=0, equating drain currents obtain:

Thus the previous two expressions can be rewritten as :

(5)

(6)

(7)

(8)

(9)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Taking the ratio of these two equations we obtain:

Observe that the pole Q is determined by the dimensions of the lossy device !
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Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement

( )
1

1

2OX EB1 0

X

W

L

C V ω
= 4Q -1

C sinθ 2Q

  
 

Vin

Vout
XC

M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1

+
=

Still must obtain W1/ L1, VEB1, and CX from either of these equations

Although it appears that there might be 3 degrees of freedom left and only

one constraint (one of these equations), if these integrators are connected in a 

loop, the operating point (Q-point) will be the same for all stages and will be that 

value where Vout=Vin.  So, this adds a second constraint.

Setting Vout=Vin , and assuming VT1=VT2,  we obtain from KVL 

DD EB1 EB2 TV =V +V +2V
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But VEB1 and VEB2 are also related in (7)



Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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Still must obtain W1/ L1, VEB1, and CX from either of these equations
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Substituting (10) into (12) and then into (8) we obtain
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Example:

Using the single-stage lossy integrator, design the integrator to meet a given

ω0 and Q requirement
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There is still one degree of freedom remaining. Can either pick W1/L1 and solve for CX or pick CX and 

solve for W1/L1. 

Explicit expression for W1/L1 not available

Tradeoffs between CX and W1/L1 will often be made

Since VOUTQ=VT+VEB1, it may be preferred to pick VEB1, then solve (12) for W1/L1  and then solve (13) 

for CX

Adding IB will provide one additional degree of freedom (we arbitrarily set it to 0 in this analysis)  

and will relax the relationship between VOUTQ and W1/L1 since  (7) will be modified
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Stay Safe and Stay Healthy !



End of Lecture 36
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