EE 508

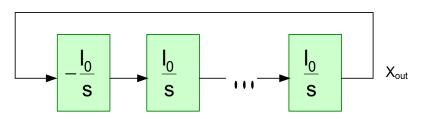
Lecture 37

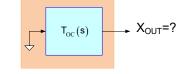
Oscillator/VCO-Derived Filters

Oscillator Background:

Consider a cascaded integrator loop comprised of n integrators

This structure is often used to build oscillators

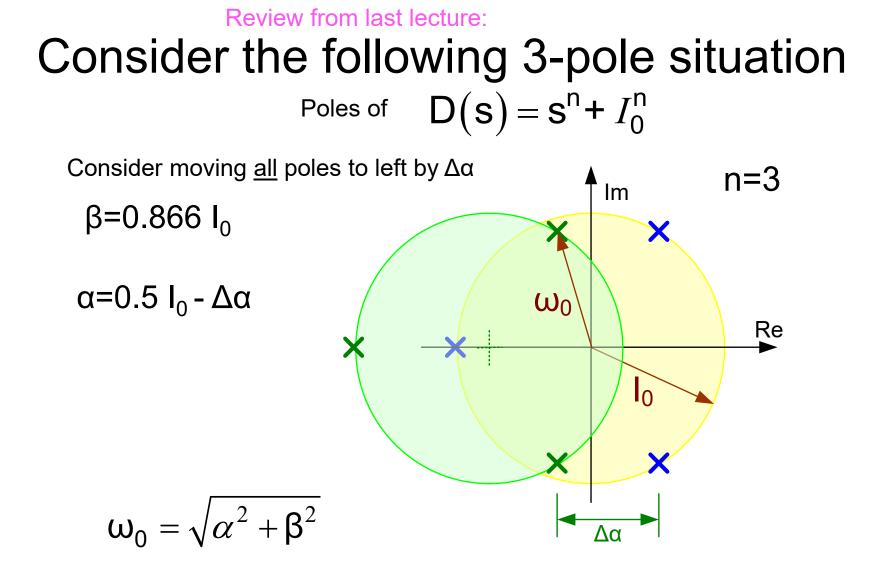




(assume an odd number of inverting integrators)

$$X_{OUT} = -\left(\frac{I_0}{s}\right)^n X_{OUT}$$

$$X_{OUT}\left(s^{n} + I_{0}^{n}\right) = 0$$
$$D(s) = s^{n} + I_{0}^{n}$$



So since α is fixed , to get a high ω_0 , want β as large as possible

Consider now the filter obtained by adding a loss of α_L to the integrators

Will now determine α_L and I_0 needed to get a desired pole Q and ω_0 by moving all poles so that <u>right-most pole pair</u> is the dominant high-frequency pole pair of the filter

The values of α and β are dependent upon I₀ but the angle θ is only dependent upon the number of integrators in the oscillator or VCO

 $\alpha + j\beta = I_0 (\cos\theta + j\sin\theta)$

Define the location of the filter pole to be

$$\alpha_F$$
+j β_F

It follows that

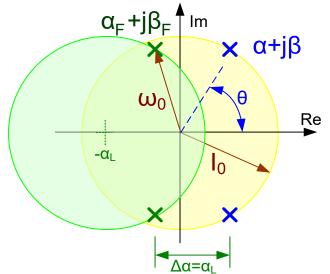
$$\beta_{\mathsf{F}} = \beta$$
 $\alpha_{\mathsf{F}} = \alpha - \alpha_{\mathsf{L}}$

The relationship between the filter parameters is well known

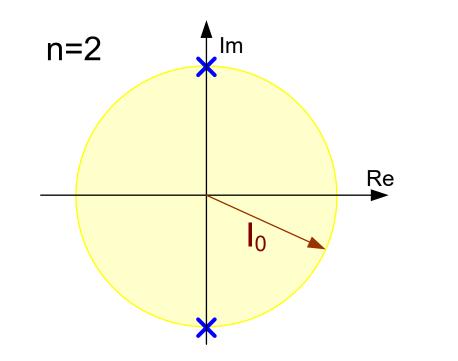
$$\beta_{\rm F} = \frac{\omega_0}{2Q} \sqrt{4Q^2 - 1} \qquad \alpha_{\rm F} = -\frac{\omega_0}{2Q}$$

Thus for any n

$$I_0 = \frac{\omega_0}{(\sin\theta)2Q} \sqrt{4Q^2 - 1} \qquad \alpha_L = \frac{\omega_0}{2Q} + I_0 \cos\theta = \frac{\omega_0}{2Q} + \frac{\omega_0}{2Q(\tan\theta)} \sqrt{4Q^2 - 1}$$



Will a two-stage structure give the highest frequency of operation for integrators with unity gain frequency I_0 ?

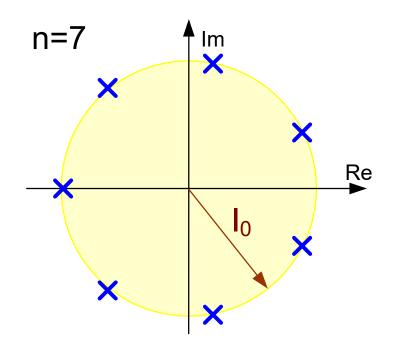


$$\omega_0 = \sqrt{\left(\alpha - \Delta \alpha\right)^2 + \beta^2} \quad \longrightarrow \quad \omega_0 = \sqrt{\left(-\Delta \alpha\right)^2 + \beta^2}$$

- Even though the two-stage structure may not oscillate, can work as a filter!
- Need odd number of inversions in integrators
- Can add phase lead if necessary

Oscillator Background:

What will happen with a circuit that has two pole-pairs in the RHP?

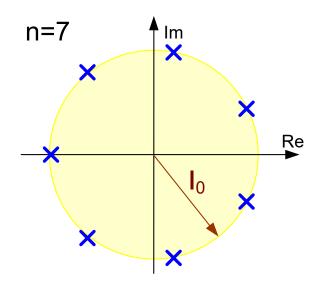


General form of response for odd number of poles:

$$A_0 e^{\alpha_{_0} t} + \sum_{i=1}^{n/2} \left| A_i \right| e^{\alpha_{_i} t} cos \left(\beta_i t + \theta_i \right)$$

The impulse response (for n=7) will have two decaying exponential terms and two growing exponential terms

What will happen with a circuit that has two pole-pairs in the RHP?



-0.62349	-0.781831482
0.222521	-0.974927912
0.900969	-0.433883739
0.900969	0.433883739
0.222521	0.974927912
-0.62349	0.781831482
-1	3.67545E-16

$$\alpha_1 = 0.2225$$
 $\beta_1 = 0.974$

 $\alpha_2 = 0.9009$ $\beta_2 = 0.4338$

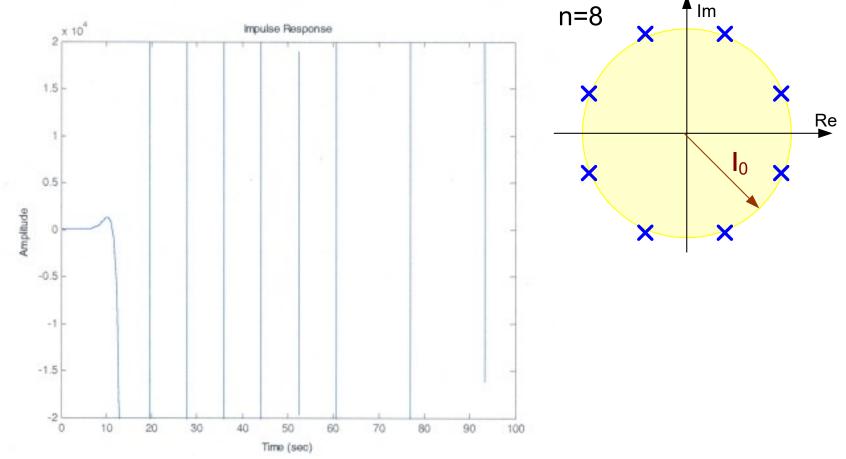
Consider the growing exponential terms and normalize to $I_0=1$

$$|\mathsf{A}_1| e^{\alpha_1 t} \cos(\beta_1 t + \theta_1) + |\mathsf{A}_2| e^{\alpha_2 t} \cos(\beta_2 t + \theta_2)$$

At t=145 (after only 10 periods of the lower frequency signal)

$$r = \frac{e^{\alpha_2 t}}{e^{\alpha_1 t}} \bigg|_{t=145} = \frac{e^{.9009 \bullet 145}}{e^{.2225 \bullet 145}} = 5.2 \times 10^{42}$$

The lower frequency oscillation will completely dominate !



What will happen with a circuit that has two pole-pairs in the RHP?

Thanks to Chen for these plots

Figure 14 N=8 impulse response

Can only see the lower frequency component !

What will happen with a circuit that has two pole-pairs in the RHP?

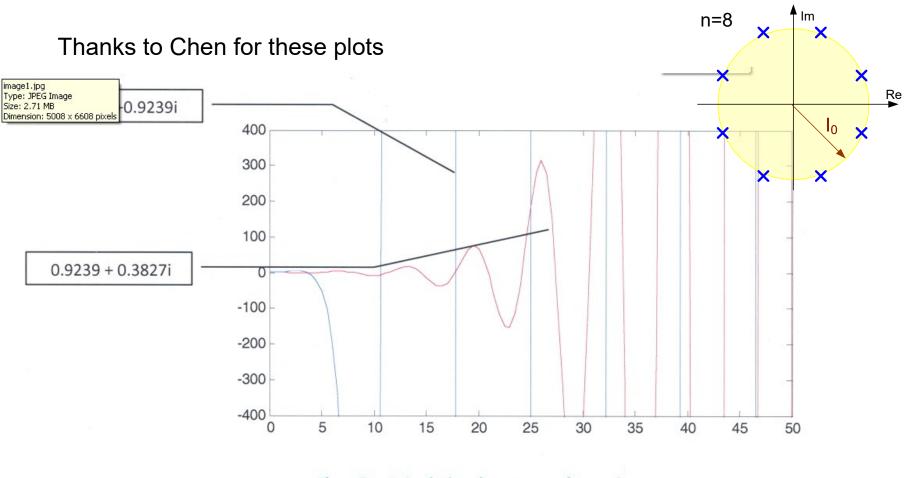
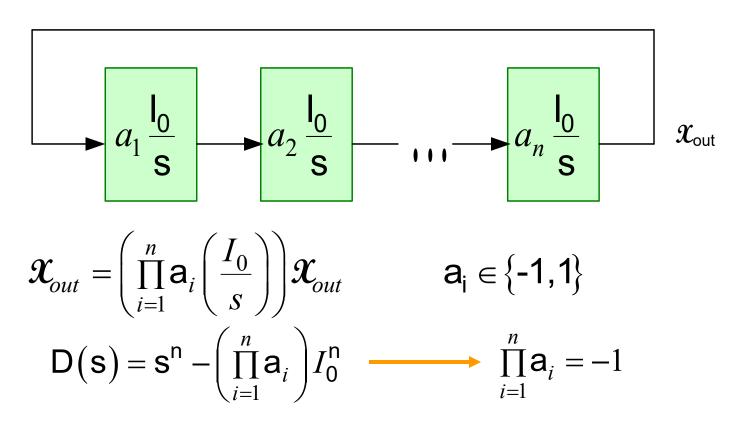


Figure 7 N=8 the impulse response of two poles

After even only two periods of the lower frequency waveform, it completely dominates !

How do we guarantee that we have a net coefficient of +1 in D(s)?

$$\mathsf{D}(\mathsf{s}) = \mathsf{s}^{\mathsf{n}} + I_0^{\mathsf{n}}$$

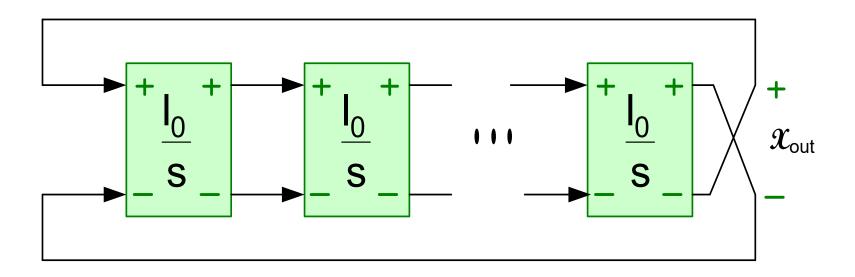


Must have an odd number of inversions in the loop !

If n is odd, all stages can be inverting and identical !

How do we guarantee that we have a net coefficient of +1 in D(s)?

$$\mathsf{D}(\mathsf{s}) = \mathsf{s}^{\mathsf{n}} + I_0^{\mathsf{n}}$$



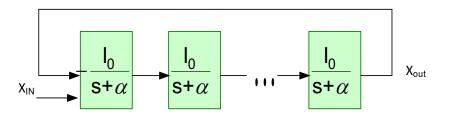
If fully differential or fully balanced, must have an odd number of crossings of outputs

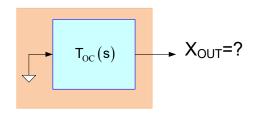
Applicable for both even and odd order loops

Inputs to Oscillator-Derived Filters:

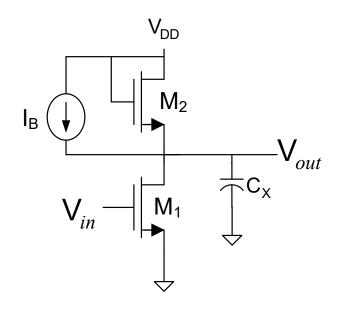
Most applicable to designing 2nd-order high frequency narrow band bandpass filters

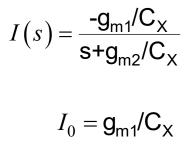
- Add loss to delay stages
- Multiple Input Locations Often Possible
- Natural Input is Input to delay stage





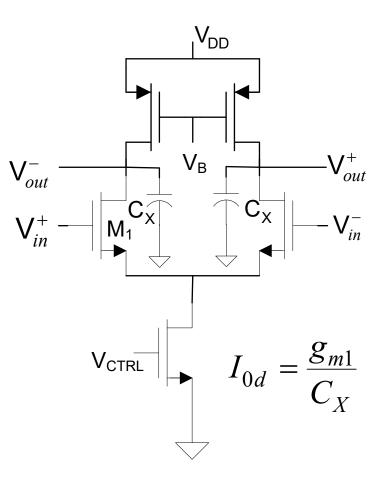
A lossy integrator stage





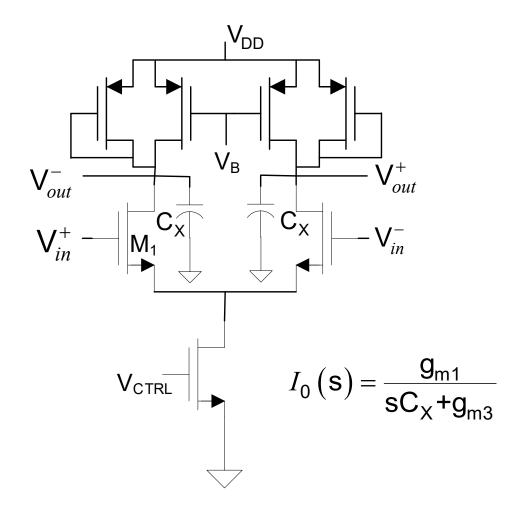
$$\alpha_L = g_{m2}/C_X$$

A fully-differential voltage-controlled integrator stage



Will need CMFB circuit

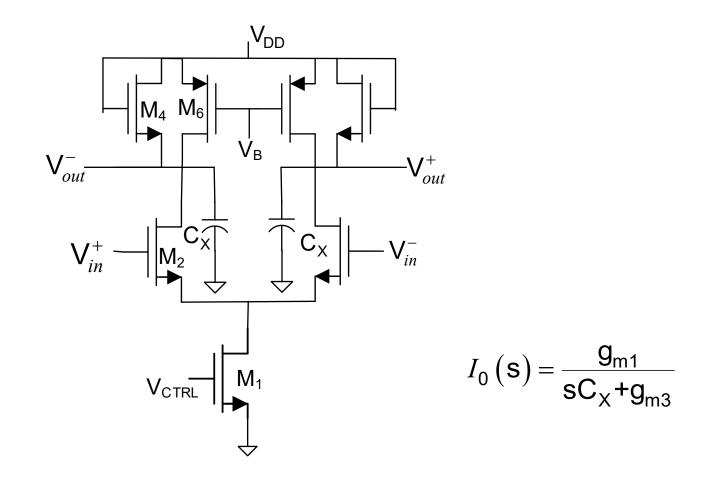
A fully-differential voltage-controlled integrator stage with loss



Will need CMFB circuit

A fully-differential voltage-controlled integrator stage with loss

(almost same as previous)



Using the single-stage lossy integrator, design the integrator to meet a given ω_0 and Q requirement $$v_{\mbox{\tiny DD}}$$

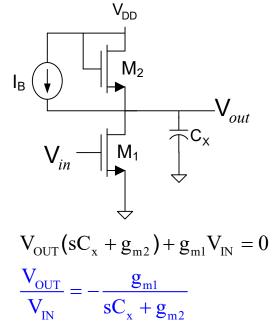
Recall:

$$I_{0} = \frac{\omega_{0}}{(\sin\theta)2Q} \sqrt{4Q^{2}-1} \qquad (1)$$

$$\alpha_{L} = \frac{\omega_{0}}{2Q} + \frac{\omega_{0}}{2Q(\tan\theta)} \sqrt{4Q^{2}-1} \qquad (2)$$

Substituting for I_0 and α_L we obtain:

$$\frac{g_{m1}}{C_X} = \frac{\omega_0}{(\sin\theta)2Q} \sqrt{4Q^2 - 1}$$
(3)
$$\frac{g_{m2}}{C_X} = \frac{\omega_0}{2Q} + \frac{\omega_0}{2Q(\tan\theta)} \sqrt{4Q^2 - 1}$$
(4)



$$I_0 = \mathbf{g}_{m1} / \mathbf{C}_{\mathsf{X}}$$
$$\alpha_L = \mathbf{g}_{m2} / \mathbf{C}_{\mathsf{X}}$$

Unknowns: $I_B, V_{EB1}, W_1/L_1, W_2/L_2, C_X$

Using the single-stage lossy integrator, design the integrator to meet a given ω_0 and Q requirement

Expressing g_{m1} and g_{m2} in terms of design parameters:

$$\frac{\mu C_{OX} W_1 V_{EB1}}{L_1 C_X} = \frac{\omega_0}{(\sin\theta) 2Q} \sqrt{4Q^2 - 1}$$

$$\frac{\mu C_{OX} W_2 V_{EB2}}{L_2 C_X} = \frac{\omega_0}{2Q} + \frac{\omega_0}{2Q(\tan\theta)} \sqrt{4Q^2 - 1} \quad (6)$$

If we assume $I_B = 0$, equating drain currents obtain:

$$V_{EB2} = V_{EB1} \sqrt{\frac{W_1 L_2}{W_2 L_1}}$$
(7)

Thus the previous two expressions can be rewritten as :

$$\frac{\mu C_{OX} V_{EB1}}{C_{X}} \left[\frac{W_{1}}{L_{1}} \right] = \frac{\omega_{0}}{\left(\sin \theta \right) 2Q} \sqrt{4Q^{2} - 1} \quad (8)$$

$$\frac{\mu C_{OX} V_{EB1}}{C_{X}} \left[\frac{W_{1} W_{2}}{L_{1} L_{2}} \right] = \frac{\omega_{0}}{2Q} + \frac{\omega_{0}}{2Q(\tan \theta)} \sqrt{4Q^{2} - 1} \quad (9)$$

$$I_0 = g_{m1} / C_X$$

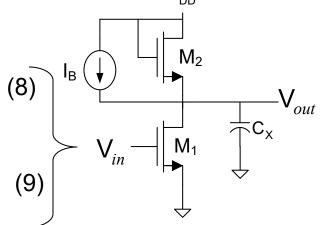
 $\alpha_L = g_{m2}/C_X$

Using the single-stage lossy integrator, design the integrator to meet a given ω_0 and Q requirement

$$\frac{\mu C_{OX} V_{EB1}}{C_X} \left[\frac{W_1}{L_1} \right] = \frac{\omega_0}{(\sin \theta) 2Q} \sqrt{4Q^2 - 1}$$
$$\frac{\mu C_{OX} V_{EB1}}{C_X} \left[\frac{W_1 W_2}{L_1 L_2} \right] = \frac{\omega_0}{2Q} + \frac{\omega_0}{2Q(\tan \theta)} \sqrt{4Q^2 - 1}$$

Taking the ratio of these two equations we obtain:

$$\frac{W_2}{L_2} = \frac{\sin\theta + \cos\theta\sqrt{4Q^2 - 1}}{\sqrt{4Q^2 - 1}}$$
(10)



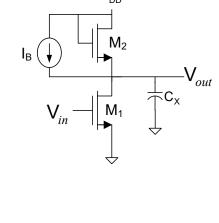
$$I_0 = g_{m1}/C_X$$

 $\alpha_L = g_{m2}/C_X$

Observe that the pole Q is determined by the dimensions of the lossy device !

Using the single-stage lossy integrator, design the integrator to meet a given ω_0 and Q requirement

$$\frac{\mu C_{OX} V_{EB1}}{C_X} \left[\frac{W_1}{L_1} \right] = \frac{\omega_0}{(\sin \theta) 2Q} \sqrt{4Q^2 - 1}$$
(8)
$$\frac{W_2}{L_2} = \frac{\sin \theta + \cos \theta \sqrt{4Q^2 - 1}}{\sqrt{4Q^2 - 1}}$$
(10)



Still must obtain W_1/L_1 , V_{EB1} , and C_X from either of these equations

Although it appears that there might be 3 degrees of freedom left and only one constraint (one of these equations), if these integrators are connected in a loop, the operating point (Q-point) will be the same for all stages and will be that value where $V_{out}=V_{in}$. So, this adds a second constraint.

Setting $V_{out}=V_{in}$, and assuming $V_{T1}=V_{T2}$, we obtain from KVL

 $V_{DD} = V_{EB1} + V_{EB2} + 2V_T \qquad (11)$

But V_{EB1} and V_{EB2} are also related in (7)

Using the single-stage lossy integrator, design the integrator to meet a given ω_0 and Q requirement

$$\frac{\mu C_{OX} V_{EB1}}{C_X} \left[\frac{W_1}{L_1} \right] = \frac{\omega_0}{(\sin \theta) 2Q} \sqrt{4Q^2 - 1}$$

$$\frac{W_2}{L_2} = \frac{\sin \theta + \cos \theta \sqrt{4Q^2 - 1}}{\sqrt{4Q^2 - 1}}$$
(10)

Still must obtain W_1/L_1 , V_{EB1} , and C_X from either of these equations

$$V_{DD} = V_{EB1} + V_{EB2} + 2V_{T}$$
(11)
$$V_{EB2} = V_{EB1} \sqrt{\frac{W_{1}L_{2}}{W_{2}L_{1}}}$$
(7)
$$V_{EB2} = V_{EB1} \sqrt{\frac{W_{1}L_{2}}{W_{2}L_{1}}}$$
(12)

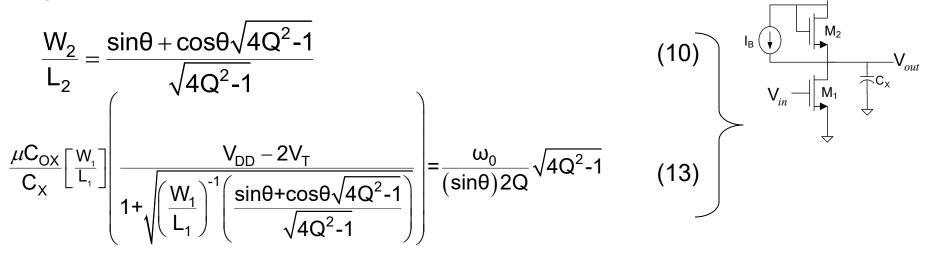
 M_2

 V_{out}

Substituting (10) into (12) and then into (8) we obtain

$$\frac{\mu C_{OX}}{C_{X}} \left[\frac{W_{1}}{L_{1}}\right] \left(\frac{V_{DD} - 2V_{T}}{1 + \sqrt{\left(\frac{W_{1}}{L_{1}}\right)^{-1} \left(\frac{\sin\theta + \cos\theta\sqrt{4Q^{2} - 1}}{\sqrt{4Q^{2} - 1}}\right)}}\right) = \frac{\omega_{0}}{(\sin\theta)2Q} \sqrt{4Q^{2} - 1}$$
(13)

Using the single-stage lossy integrator, design the integrator to meet a given $\omega_{_0}$ and Q requirement $$v_{_{\rm DD}}$$



There is still one degree of freedom remaining. Can either pick W_1/L_1 and solve for C_X or pick C_X and solve for W_1/L_1 .

Explicit expression for W₁/L₁ not available

Tradeoffs between C_X and W₁/L₁ will often be made

Since $V_{OUTQ} = V_T + V_{EB1}$, it may be preferred to pick V_{EB1} , then solve (12) for W_1/L_1 and then solve (13) for C_X

Adding I_B will provide one additional degree of freedom (we arbitrarily set it to 0 in this analysis) and will relax the relationship between V_{OUTQ} and W_1/L_1 since (7) will be modified

Stay Safe and Stay Healthy !

End of Lecture 36